GYLON Flachdichtungen

Flachdichtungen mit hoher chemischer Beständigkeit

Garlock GYLON ist ein hochwertiges und einzigartiges Flachdichtungs-Material. Die einzigartige Zusammensetzung von GYLON Flachdichtungen bietet überragende Leistungen und erfüllt gleichzeitig sämtliche Anforderungen bzgl. Verschraubung und Dichtigkeit. Die asbestfreien GYLON Dichtungen übertreffen alle Eigenschaften herkömmlicher PTFE-Produkte durch gestoppten Kaltfluss und Einsätze bei höheren Druck-Temperatur Kombinationen. Typische Anwendung für GYLON Dichtungen finden sich in der Nahrungsmittel-, der chemischen und petrochemischen Industrie, in Zellstoff- und Papierwerken sowie in der pharmazeutischen Industrie. Angaben zu speziellen Chemikalien finden sich in der chemischen Beständigkeitsliste oder wenden Sie sich an Garlock.

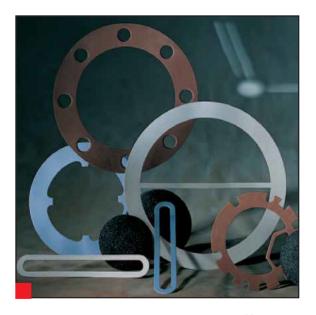
GYLON Standard Style 3500 und 3501 E

Diese Universal-Flachdichtung bietet erhebliche Vorteile gegenüber herkömmlichen PTFE-Dichtungen im Hinblick auf ihre Funktionsweise beim Einsatz von hohen Temperaturen und Druck. Style 3500 und 3501 E GYLON Flachdichtungen entsprechen den FDA-Spezifikationen und werden auch häufig in der chemischen und petrochemischen Industrie eingesetzt.

GYLON Blau Style 3504

Aufgrund der inneren Mikrokugelstruktur ist GYLON Blau sehr kompressibel. Dieses hervorragende Material ist besonders geeignet für Glasrohrleitungen, emaillierte Flansche und Kunststoff-Flansche und Anwendungen, wo verminderte Schraubenkräfte auftreten. GYLON 3504 entspricht den FDA-Spezifikationen und bietet eine ideale Alternative zu PTFE ummantelten Flachdichtungen.

GYLON Weiß Style 3510


GYLON 3510 besitzt von allen Typen der GYLON Familie die höchste chemische Beständigkeit. Es eignet sich daher besonders für den Einsatz bei aggressiven Medien, wie z. B. Flusssäure, Kalilauge, Aluminiumfluorid sowie galvanische Anlagen. GYLON 3510 entspricht der FDA-Spezifikation.

GYLON Style 3545

GYLON Style 3545 besteht aus einer hoch kompressiblen Außenschicht aus mikrozellularem PTFE und einer druckstandsfesten PTFE-Innenschicht, die homogen miteinander versintert sind, um Kaltfluss und Verformungen zu reduzieren. Die Materialien bestehen aus reinem PTFE ohne Füllstoffe. GYLON Style 3545 weist eine sehr weiche Oberfläche auf. Dieses eignet sich besonders für Flansche mit unebenen Oberflächen und Anwendungen, wo mit geringen Schraubenkräften gearbeitet wird.

GYLON Style HP 3560

Spezielle GYLON Dichtung mit perforierter Edelstahl-Einlage für aggressive Chemikalien und extreme Umgebungsbedingungen, in denen Sicherheit und Berstfestigkeit von wesentlicher Bedeutung sind.

GYLON Standard, Blau und Weiß wurden TÜVgeprüft: Qualitätsprüfung gemäß den TA-Luft-Bestimmungen.

Ein umfassendes Testprogramm wurde vom TÜV Süddeutschland durchgeführt, in dem die folgenden Aspekte berücksichtigt wurden:

- Geringe Leckrate der Dichtung unter maximalen Betriebsbedingungen. Nachweis für eine Leckrate
 ≤ 1,0 x 10⁴mbar x ltr /(s x m) laut TA-Luft 2002
- Prüfung der Kontrollen für Montage und Wartung zur Gewährleistung eines einwandfreien Betriebs.
- Bestätigung der Leckdichtigkeit der Materialien auch in der Dauerprüfung.
- Nachweis von ausreichend hohen Festigkeitseigenschaften für die entsprechenden Temperaturen.
- Ausblassicherheit (2,5 x PN).
- Nachweis der kontrollierten und gleich bleibend hohen Produktionsqualität beim Hersteller.

Bei der Analyse des GYLON Materials für Flachdichtungen durch den TÜV Süddeutschland haben sich die in der unten stehenden Tabelle aufgeführten Resultate ergeben. In Übereinstimmung mit dem Prüfprogramm des Instituts für Kunststoff wurde abschließend befunden, dass GYLON für die angegebenen Betriebsparameter und bei der Verwendung in Verbindung mit flachen Flanschen gemäß DIN 2635 C im Sinne der TA-Luft-Bestimmungen als qualitativ hochwertig einzustufen ist.

Dichtungstyp	σ _{vu} (N/mm²)	Betriebs- temperatur	Betriebs- druck (Bar)
GYLON Standard Style 3501 E	30	von RT bis 250	40
GYLON Blau Style 3504	20	von RT bis 250	40
GYLON Weiß Style 3510	30	von RT bis 250	25

Informationen zu GYLON Flachdichtungen

GYLON als Endlos-Dichtung

Mit Hilfe eines speziellen Sinterverfahrens werden von Garlock Endlos-Dichtungen jeder Form und Größe hergestellt.

Lieferformen

GYLON Dichtungen sind in folgenden Plattengrößen (mm):

1500 x 1500, 1500 x 2280, 1780 x 1780

und Stärken mit den entsprechenden Toleranzen (mm) erhältlich:

0,4 (+0,13/-0,05) · 0,8 (±0,13) · 1,0 (±0,13) · 1,6 (±0,15) · 2,0 (±0,15) · 3,2 (±0,25) · 4,8 (±0,4) · 6,4 (±0,5)

GYLON Flachdichtungen werden als Plattenmaterial oder als einbaufertige Dichtungen angeboten. Diese sind in sämtlichen Standardgrößen oder in individuellen Abmessungen lieferbar. Hinweise zum richtigen Einbau und zur korrekten Verschraubung finden Sie auf Seite 9.

Prüfungen und Zertifizierung von GYLON Dichtungen

Die Dichtungen wurden für spezielle Anwendungen und Bedingungen durch offizielle, unabhängige Forschungseinrichtungen geprüft. Ergebnisse der im Folgenden aufgeführten Prüfungen sind auf Anfrage erhältlich.

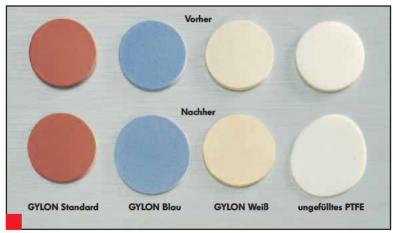
Sauerstoff

BAM-Zertifizierung für GYLON Style 3501 E, Style 3504 und Style 3510.

TÜV-Zertifizierung:

GYLON Style 3501 E, Style 3504 und Style 3510 sind vom TÜV zertifiziert qualitativ hochwertig entsprechend den TA-Luft-Bestimmungen.

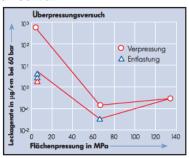
FDA-Bestimmungen


GYLON Standard, Blau und Weiß entsprechen den FDA-Bestimmungen.

Chlor

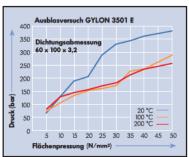
GYLON Style 3500 und 3510 wurden vom Chlorine Institute Washington D.C./USA zur Abdichtung bei flüssigem und gasförmigem Chlor empfohlen.

US-Landwirtschaftsministerium

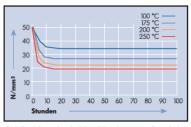

Das US-amerikanische Landwirtschaftsministerium hat die Verwendung von GYLON Style 3500 für alle Anwendungen in direktem Kontakt mit Fleisch zugelassen.

GYLON mit deutlich reduziertem Kaltfluss. Der beste Widerstand gegen Deformationen - ein Vergleich zwischen GYLON Dichtungen und PTFE bei einer Kompression mit 140 Bar über 1 Stunde bei einer Temperatur von 260°C (mit 14 N/mm²).

Prüfung der Folgen von starker Sitzflächenbelastung


Um das Verhalten der Dichtung unter übermäßiger Belastung zu untersuchen, wird die Dichtung einem Innendruck von 60 Bar Stickstoff ausgesetzt. Der Leckverlust wird bei einer Dichtungsbelastung von 10 MPa gemessen. Anschließend wird die Belastung auf 70 MPa erhöht und der Leckverlust erneut ermittelt. Das gleiche Verfahren wird unter 140 MPa durchgeführt. Die Dichtung wird nun schrittweise auf eine Belastung von 70 MPa und anschließend 5 MPa zurückgeführt und der Leckverlust erneut bestimmt. Wird das Material einer übermäßigen Belastung ausgesetzt, können gravierende Veränderungen auftreten (z. B. plötzlicher Kaltfluss). GYLON wies auch unter erhöhter Dichtungsbelastung keine Anzeichen von Veränderungen oder Defekten auf. Das Dichtungsvermögen wurde beim Absenken der Belastung auf 5 MPa komplett aufrechterhalten. Der Leckverlust lag an diesem Punkt im Rahmen der Grenzwerte, die Rückfederung war nicht beeinträchtigt. Die kompletten Ergebnisse sind auf Anfrage erhältlich. Bitte wenden Sie sich an Garlock.

Der Test zeigt die Auswirkungen von Überpressung bei GYLON Standard 90/50/2; Test zwischen Druckplatten.


Berstversuch

Der Test hat zum Ziel, Schwächen an Flachdichtungen aufzudecken, wenn sie einem plötzlichen Anstieg des Innendrucks ausgesetzt werden. Die Dichtungen werden zwischen Flanschen installiert und unterschiedlichen Drücken sowie wechselnden Temperaturen ausgesetzt. Der Druck wird anschließend erhöht, um das Bersten der Dichtung auszulösen. Veränderungen an der Dichtung werden beobachtet und aufgezeichnet. Sämtliche GYLON Dichtungen sind bei 200°C und 25 Bar Innendruck sicher.

Im Gegensatz zu faserverstärkten Flachdichtungen erwiesen sich GYLON Flachdichtungen als berst- und ausblassicher.

Druckstandfestigkeit gemäß DIN 52913

GYLON Standard: $55 \times 75 \times 2$ mm; anfängliche Druckbeanspruchung 50 N/mm^2 .

GYLON Technische Informationen

	GYLON Standard Style 3501 E**	GYLON Standard Style 3500	GYLON Blau Style 3504**	GYLON Weiß Style 3510**	GYLON Style 3545	GYLON Style HP 3560
Temperaturbereich	-210 bis +260 °C	-210 bis +260 °C	-210 bis +260 °C	-210 bis +260 °C	-210 bis +260 °C	-210 bis +260 °C
Druckbelastung	83 bar	83 bar	55 bar	83 bar	83 bar	172 bar
P x T, max.* Stärke 1 und 1,5 mm 3,0 mm	12000 8600	12000 8600	12000 8600	12000 8600	12000 8600	25000 15000
Druckstandfestigkeit (DIN 52913) 150 °C - 30 N/mm² 175 °C - 50 N/mm²	16 25	16 25	15 -	14 -	14 -	- -
Kompressibilität (ASTM F 36)	7-12%	7-12%	25-45%	4-10%	60-70%	3-7%
Rückfederung (ASTM F 36)	40%	40%	30%	40%	15%	50%
Standfestigkeit (ASTM F 38)	18%	18%	40%	11%	15%	20%
Zugfestigkeit (ASTM D 1708)	14 N/mm²	14 N/mm²	14 N/mm²	14 N/mm²	-	34 N/mm²
Dichtfähigkeit (ASTM F 37 B) ASTM Fuel A: Innendruck = 0,7 bar, Dichtungsbelastung = 7 N/mm²	0,1 ml/h	0,22 ml/h	0,12 ml/h	0,04 ml/h	0,15 ml/h	0,02 ml/h
Gas-Abdichtfähigkeit (DIN 3535/6)	0,10 cm ³ /min	0,25 cm³/min	0,25 cm³/min	0,10 cm³/min	0,04 cm ³ /min	0,02 cm³/min
Leckrate (DIN 28090-2), $\lambda_{2,0}$	<0,001 mg/(s x m)	<0,001 mg/ls x ml	<0,001 mg/(s x m)	<0,001 mg/(s x m)	<0,002 mg/ls x m)	-
Dichte (DIN 28090-2)	2,19 g/cm³	2,10 g/cm³	1,70 g/cm³	2,80 g/cm³	-	-

^{*} P x T-Faktor siehe Seite 9

Dichtungskennwerte gemäß DIN 28090 für die Qualitätssicherung und die Berechnung von Flanschverbindungen

			GYLON Standard Style 3500 Style 3501 E	GYLON Weiß Style 3510	GYLON Blau Style 3504	GYLON Style 3545
Maximale anfängliche	DIN 28090-1	N/mm²	160	150	150	140
Maximale Druckbeanspruchung im Betrieb $\sigma_{\rm B0/200^{\circ}C}$		N/mm²	100	70	70	70
Minimale anfängliche ${\it Belastung} \ \ \sigma_{\rm VU/L0,1-40Bar}$	DIN 28090-1	N/mm²	20	19	10	17
Kompressionsmodul bei Raumtemperatur $\mathcal{E}_{\mathrm{KSW}}$	DIN 28090-2	%	3,1	4,1	20	-
Prozentuales Setzverhalten bei Raumtemperatur $\mathcal{E}_{\mathrm{KRW}}$	DIN 28090-2	%	1,1	1,3	6,1	-
Kompressionsmodul bei erhöhter Temperatur $\mathcal{E}_{ extsf{WSW}}$	DIN 28090-2	%	12	29	32	-
Prozentuales Setzverhalten bei erhöhter Temperatur $\mathcal{E}_{ extsf{WRW}}$	DIN 28090-2	%	2,5	4,2	5,7	-

Dichtungskennwerte nach DIN E 2505 - Teil 2

Dictiongskeiniwerie nach Dirt 2 2005 - Ien 2								
Dichtungstyp	Stärk	ce Einba	Einbauzustand			Betriebszustand °C		
	h _D	σ _{VU} N/mm²	$\frac{\sigma_{\text{VO}}}{\text{N/mm}^2}$			200 nm²	Anmerkungen	
GYLON Standard Style 3500 Style 3501 E	1,0-3,	,2 18	160	160	120	100		
GYLON Weiß Style 3510	1,0-3,	,2 15	150	150	85	70	01 < 04/0	
GYLON Blau Style 3504	1,0-3,	,2 8	150	150	85	70		

Die Werte σ_{VU} gelten für Gas- und Dampfanwendungen. Für Flüssigkeiten können niedrigere Werte zugrunde gelegt werden (~20 %).

Dichtungskennwerte gemäß "AD-Merkblatt B7"

Temperatur	k _O x K _D	k ₁
°C	N/mm	mm
20	18 × b _D	1,3 x b _D
20-250	10 × b _D	1,3 x b _D
20	15 x b _D	1,1 × b _D
20-250	10 x b _D	1,1 × b _D
20	8 x b _D	1,1 × b _D
20-250	6 x b _D	1,1 × b _D

Die k_{O} x K_{D} -Werte für Flüssigkeiten können um 20 % niedriger sein. b_{D} = Wirkbreite der Dichtung.

Die Oberflächenbeschaffenheit an den Kontaktflächen sollte bei $R_z = 50$ -160 μm liegen.

^{**} BAM-Zulassung für Sauerstoff